MI - TD 2

Dynamique du point

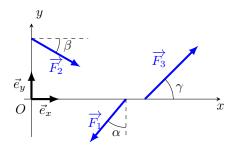
Conseils généraux

Avant de commencer un exercice de mécanique, il est plus que recommandé :

- de définir le système étudié,
- de définir un référentiel galiléen, cadre de l'étude,
- de faire un bilan exhaustif des forces s'exerçant sur le système,
- d'étudier les conditions initiales et les causes extérieures (forces) afin...
- ...de déterminer les degrés de liberté et la nature de la trajectoire et de choisir une base de représentation (cartésienne, cylindrique, polaire, sphérique),
- d'exprimer les vecteurs position, vitesse et accélération dans la base choisie,
- d'exprimer dans la base choisie toutes les actions ou forces s'exerçant sur le système.

I - Projections

Pour chacune des trois forces de la figure, déterminer ses composantes dans la base $(\vec{e}_x, \vec{e}_y, \vec{e}_z)$ en fonction de sa norme notée $\|\vec{F}_1\|$, $\|\vec{F}_2\|$ ou $\|\vec{F}_3\|$ et de l'angle α , β ou γ .



II - Lancer de balle

Une balle est lancée au bord du toit d'un immeuble dans une direction faisant un angle α au-dessus de l'horizontale.

Elle atterrit 5 secondes plus tard à 50 mètres du pied de l'immeuble.

Si la hauteur maximale est de 20 mètres au-dessus du toit, trouver la vitesse v_0 (en norme) avec laquelle elle a été lancée, et l'angle α avec lequel elle a été lancée. On négligera les frottements de l'air.

III - Poussée d'Archimède

III.1 - Liquides non miscibles

On considère le système suivant : deux liquides non miscibles dans un récipient en contact avec la pression atmosphérique. À l'équilibre, le fluide 1 de masse volumique ρ_1 est en haut et le fluide 2 de masse volumique ρ_2 est en bas. À partir de cette information démontrer que $\rho_1 < \rho_2$. Le raisonnement consiste à étudier ce qui se passerait pour une goutte du fluide 1 si elle se retrouvait immergée dans le fluide 2.

III.2 - Glaçon et eau liquide

Un glaçon de forme cylindrique (hauteur $h=3.0\,\mathrm{cm}$, rayon $R=2.0\,\mathrm{cm}$, température $t=0.0\,^{\circ}\mathrm{C}$) flotte à la surface d'une eau liquide à $0.0\,^{\circ}\mathrm{C}$, l'axe du cylindre étant toujours perpendiculaire à la surface du liquide. On note a la hauteur de la glace qui est à l'air libre, l'air étant également à $0.0\,^{\circ}\mathrm{C}$. On donne la masse volumique de l'eau liquide $\rho_{\ell}=1.0\cdot10^3\,\mathrm{kg}\,\mathrm{m}^{-3}$ et celle de la glace $\rho_{s}=0.92\cdot10^3\,\mathrm{kg}\,\mathrm{m}^{-3}$ à $0.0\,^{\circ}\mathrm{C}$.

1. Déterminer le rapport $\frac{a}{h}$ (c'est-à-dire la partie émergée du glaçon).

- 2. Quelle force doit-on exercer verticalement avec l'extrémité d'une paille pour maintenir le glaçon à la lisière de la surface de l'eau (a = 0)? Application numérique.
- 3. On admet que le récipient contenant l'eau et le glaçon est de forme cylindrique de section S. Que peut-on dire du niveau de l'eau une fois que le glaçon a totalement fondu?

IV - Mouvement rectiligne avec frottement linéaire

On considère un pétrolier assimilable à un point matériel de masse m. Il est initialement animé d'un mouvement rectiligne uniforme de vitesse v_0 , maintenu grâce au moteur qui exerce une force de poussée \vec{F}_p . Il s'exerce sur lui une force de frottement fluide linéaire $\vec{f} = -h\vec{v}$ où \vec{v} est le vecteur vitesse du bateau et h une constante positive.

On se place pour tout l'exercice dans un repère cartsésien (Oxyz) où O est la position du pétrolier à l'instant t = 0, (Ox) est l'axe horizontal de même direction et sens que $\overrightarrow{v_0}$ et (Oy) l'axe vertical orienté vers le haut.

- 1. Donner l'expression de la force de poussée $\overrightarrow{F_p}$, puis sa valeur F_p .
- 2. À l'instant t = 0, on coupe le moteur. Exprimer v(t) et x(t). Donner l'expression et la valeur de la distance totale parcourue d et du temps caractéristique de l'équation du mouvement τ .
- 3. Déterminer les durées Δt_1 , Δt_2 et Δt_3 nécessaires pour parcourir respectivement les distances d/4, d/2 et 3d/4. Quel est le temps nécessaire pour parcourir la distance d? Comment expliquez vous cela?
- 4. On considère maintenant que, à l'instant t = 0, on inverse la poussée des moteurs plutôt que de les arrêter. En déduire le temps t_a et la distance d_a d'arrêt.

Données: $m = 120 \cdot 10^3 \,\mathrm{t}$, $v_0 = 8.0 \,\mathrm{m \, s^{-1}}$, $h = 1.5 \cdot 10^5 \,\mathrm{kg \, s^{-1}}$

V - Mouvement de chute avec frottement linéaire

On veut déterminer le mouvement d'un projectile sphérique de masse m, de rayon 1 mm et de masse volumique $\rho = 8 \cdot 10^3 \,\mathrm{kg} \,\mathrm{m}^{-3}$. On néglige tout mouvement de rotation du projectile qui sera aussi considéré indéformable. Il est lancé dans l'air à partir de O, avec une vitesse initiale \vec{v}_0 faisant un angle α avec l'horizontale. La résistance de l'air crée sur le projectile une force de frottement fluide linéaire $\vec{f} = -k \, \vec{v}$ où $\vec{v} = \frac{\mathrm{d} \overrightarrow{OM}}{\mathrm{d}t}$ est la vitesse du projectile (on suppose que l'air est au repos dans le référentiel d'étude).

- 1. Établir l'équation différentielle vérifiée par le vecteur-vitesse \vec{v} .
- 2. Déterminer l'expression de $\vec{v}(t)$ et en déduire l'expression de la vitesse limite \vec{v}_l du projectile.
- 3. Déterminer l'expression de $\overrightarrow{OM}(t)$.
- 4. En déduire l'expression de x_l , abscisse limite que peut atteindre le projectile.
- 5. Esquisser la trajectoire.

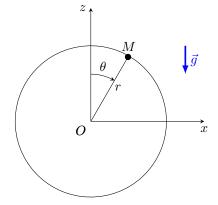
VI - Brique sur un plan incliné

On considère une brique supposée ponctuelle de masse m=500 g sur un support plan incliné d'un angle α par rapport à l'horizontale. On néglige les frottements fluides avec l'air.

- 1. Dans un premier temps, on néglige les frottements solides et on considère l'expérience où la brique est lancée le long du plan incliné, vers le haut avec une vitesse $v_0 = 1, 5 \text{ m.s}^{-1}$. Déterminer l'instant auquel la brique s'arrête et la distance qu'elle a parcourue. Redescend-elle?
- 2. On prend en compte désormais les frottements solides, avec un coefficient de frottement dynamique $\mu_d = 0, 2$. Déterminer l'instant auquel la brique s'arrête et la distance qu'elle a parcourue.
- 3. On continue avec les hypothèses de la question précédente, on donne en plus le coefficient de frottement statique $\mu_s = 0, 2$. La brique a atteint son point culminant et s'arrête. Pour quel angle redescend-elle?
- 4. Dans le cas où la brique redescend, établir les équations horaires du mouvement.

VII - Glissement sur une calotte sphérique

Un point matériel M de masse m est lâché sans vitesse initiale en un point très proche du sommet d'une sphère de rayon R sur laquelle il glisse sans frottement. Déterminer la position et la vitesse du point matériel au moment où il quitte la sphère.



Angle initial : $\theta(t=0) = \varepsilon \approx 0$.

VIII - Bille sur une tige en rotation

Une bille considérée comme un point matériel de masse M peut coulisser sans frottement le long d'une tige rigide horizontale. La tige, de longueur a, est en rotation à vitesse angulaire constante $\Omega = \dot{\theta} = \frac{\mathrm{d}\theta}{\mathrm{d}t}$ autour d'un axe vertical fixe dans le laboratoire.

La bille est abandonnée sans vitesse initiale par rapport à la tige à une distance $\frac{a}{2}$ de l'axe de rotation.

- 1. Déterminer en fonction de Ω , l'instant t_1 auquel la bille arrive au bout de la tige.
- 2. Déterminer l'expression du vecteur \vec{R} définissant la force de réaction qu'exerce la tige sur la bille au cours du mouvement.
- 3. On considère que la tige se déforme irréversiblement (on parle de déformation plastique) si le module de la force exercée par la bille sur la tige est supérieure à une limite appelée limite élastique et notée F_{max} . Déterminer l'instant $t_{\text{plastique}}$ en fonction de M, a et Ω (en supposant que la tige est assez longue pour avoir $t_{\text{plastique}} < t_1$).

IX - Fusée

On étudie le mouvement dans un référentiel galiléen d'une fusée de masse totale m(t) et de vitesse $\overrightarrow{v}(t)$ à l'instant t. Elle éjecte des gaz à vitesse relative \overrightarrow{u} constante (de norme $u = 3000 \,\mathrm{m\,s^{-1}}$) par rapport à la fusée, avec un débit massique $D_m = 60 \,\mathrm{kg\,s^{-1}}$. La résultante des forces extérieures exercées sur la fusée est notée \overrightarrow{R} .

- 1. En effectuant un bilan de quantité de mouvement entre les instants t et $T+\mathrm{d}t$ sur un système fermé, montrer que $m(t)\frac{\mathrm{d}\vec{v}(t)}{\mathrm{d}t}=\vec{R}+\vec{T}$ où \vec{T} est la force de poussée due à l'éjection des gaz que vous exprimerez en fonction de D_m et \overrightarrow{u} .
- 2. On considère une fusée se déplaçant dans le vide, en l'absence de pesanteur; les masses initiale et finale de cette fusée sont m_i et m_f ; \overrightarrow{u} et $\overrightarrow{v}(t)$ ont la même direction fixe. Exprimer l'accroissement de vitesse $\Delta v = v_f v_i$ en fonction de m_i , m_f et u.
- 3. On se place maintenant sur une planète supposée sans atmosphère, générant un champ de pesanteur $\overrightarrow{g} = -g \overrightarrow{e_z}$ supposé constant. À t = 0, une fusée de masse initiale m_0 et initialement immobile située en O est mise à feu et commence à s'élever verticalement. Établir les expressions de la vitesse v(t) et de l'altitude z(t) en fonction du temps, de m_0 , g, u et D_m .